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I. INTRODUCTION 

 

Mathematical modelling involves the abstraction 

and representation of real-world systems through 

mathematical expressions and equations. 

Traditional modelling relies on domain knowledge 

and analytical tools to build models that are both 

interpretable and predictive. However, many real-

world systems exhibit nonlinear, high-dimensional, 

and stochastic behaviours that challenge 

conventional approaches. AI, particularly data-

driven models, has emerged as a powerful 

complement to traditional mathematical modelling. 

 

II. ROLE OF AI IN MATHEMATICAL 

MODELLING 
 

AI techniques, particularly machine learning (ML) 

and deep learning (DL), can handle large datasets, 

detect complex patterns, and approximate 

unknown functions without explicit programming. 

These capabilities make them ideal for:  

 

• Model construction: AI can suggest model 

structures or directly learn models from data.  

• Parameter estimation: AI methods can 

optimize parameters in ways traditional 

techniques may struggle with.  

• Model validation and refinement: AI can 

automate validation processes and adapt 

models dynamically as new data becomes 

available. 

 

III. CASE STUDIES EPIDEMIOLOGICAL 

MODELLING 
 

In the context of infectious disease modelling, AI 

has been used to forecast outbreaks, estimate 

transmission rates, and simulate intervention 

strategies.  

 

For example, machine learning models have been 

employed alongside SIR-type compartmental 

models to improve prediction accuracy (Yang et al., 

2020).  
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A suitable example of such integration is the AI-

enhanced SEIR (Susceptible-ExposedInfectious-

Recovered) model, where deep learning is used to 

dynamically estimate parameters like transmission 

and recovery rates. In this hybrid approach, the 

classical SEIR model provides the mechanistic 

framework, while neural networks—particularly 

recurrent neural networks (RNNs) or long short-

term memory networks (LSTMs)—learn 

timedependent parameters from real-time data. 

This improves the adaptability and predictive 

accuracy of the model during rapidly evolving 

situations such as a pandemic. For instance, the 

transmission rate β(t) can be learned from daily 

case reports using an LSTM network, which 

captures temporal patterns and lagged effects. 

Such models are particularly valuable for simulating 

the impact of public health interventions, as they 

can adjust forecasts based on current policy or 

mobility data. This synergy between AI and classical 

modelling enhances both interpretability and 

responsiveness, making it a powerful tool for 

decision-makers during public health crises. In the 

context of infectious disease modelling, AI has been 

used to forecast outbreaks, estimate transmission 

rates, and simulate intervention strategies. For 

example, machine learning models have been 

employed alongside SIR-type compartmental 

models to improve prediction accuracy (Yang et al., 

2020).  

 

AI-Enhanced SEIR Model: Mathematical 

Formulation  

The classical SEIR model is defined by the following 

system of differential equations:   

 
Where:S(t), E(t), I(t), R(t) are the susceptible, 

exposed, infectious, and recovered populations at 

time  t, N is the total population, β(t) is the time-

varying transmission rate (learned via AI), σ is the  

rate at which exposed individuals become 

infectious, γ is the recovery rate.  

 

In the AI-enhanced version, the function 

β(t)\beta(t)β(t) is modeled using a Long Short-Term  

Memory (LSTM) network, trained on daily infection 

data, mobility reports, and public policy  indicators. 

The learned β(t) captures temporal dynamics and 

external influences that are hard to model 

analytically.  

 

This hybrid approach combines the interpretability 

and epidemiological grounding of compartmental 

models with the adaptive learning capabilities of AI, 

providing more accurate and flexible forecasts in 

real-time outbreak scenarios.  

 

III. CLIMATE MODELLING 
 

AI has contributed to enhancing the spatial and 

temporal resolution of climate models through 

super-resolution techniques and emulation of sub-

grid processes.  

 

DL models have been trained on climate simulation 

outputs to provide faster and more detailed 

forecasts (Reichstein et al., 2019).  

 

A concrete example is the use of convolutional 

neural networks (CNNs) for downscaling coarse-

resolution climate model outputs. These super-

resolution models learn mappings from low-

resolution inputs—such as those generated by 

general circulation models (GCMs)—to high-

resolution climate patterns. For instance, Vandal et 

al. (2017) applied CNN-based architectures to 

improve precipitation estimates at a finer spatial 

scale, achieving more accurate regional climate 

predictions. Additionally, AI models have been 

employed to emulate computationally intensive 

components of Earth system models. By replacing 

physics-based components with trained neural 

networks, researchers have reduced simulation 

runtimes significantly while preserving fidelity. Such 

emulation techniques are particularly effective for 

long-term climate projections and sensitivity 

analyses. These advancements allow scientists and 
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policymakers to better understand localized climate 

risks and design targeted adaptation strategies.  

 

Model Example: Super-Resolution Convolutional 

Neural Network (SRCNN) 

The Super-Resolution Convolutional Neural 

Network (SRCNN) is a pioneering deep learning  

model initially developed for image super-

resolution, but it has been effectively adapted for  

climate downscaling — enhancing the spatial 

resolution of coarse climate model outputs.  

 

Basic Architecture of SRCNN  

SRCNN consists of three main convolutional layers, 

each performing a specific role in the 

transformation from low-resolution (LR) to high-

resolution (HR) data: 

 

Patch Extraction and Representation:  

• A convolutional layer extracts overlapping 

patches from the low-resolution input climate 

data.  

• These patches are projected into a high-

dimensional feature space.  

 

Mathematically:  

F1(Y) = max(0, W1∗Y + B1)  

where Y is the LR input, W1 are learned filters, and 

B1 is the bias.  

 

Non-linear Mapping:  

• This layer maps the extracted LR feature 

representations into HR feature space using a 

non-linear transformation.  

 

Mathematically:  

F2 = max(0, W2∗F1+B2)  

 

Reconstruction Layer 

The final layer aggregates the high-resolution 

features to reconstruct the final  

 

HR output.  

 

Mathematically:  

X ˆ = W3∗F2+B3  

Where:  

* denotes the convolution operation,  

W1, W2, W3 and B1,B2,B3 are the learnable weights 

and biases, ReLU (Rectified Linear Unit) is 

commonly used as the activation function.  

 

Application in Climate Downscaling  

• SRCNN models have been successfully applied 

to enhance resolution in various climate  

• variables, such as: Surface temperature, 

Precipitation, Wind fields etc.  

• These models can generate high-resolution 

outputs that closely match the fidelity of  

• traditional dynamical downscaling approaches, 

but with significantly lower computational costs.  

 

Advantages of SRCNN in Climate Science  

• Efficient training and inference  

• Flexible architecture adaptable to multi-channel 

climate data  

• High accuracy in capturing spatial variability  

• Scalable to global or regional datasetsSRCNN 

models have been successfully applied to 

improve resolution in temperature and 

precipitation data, yielding outputs comparable 

to high-resolution simulations but at a fraction 

of the computational cost. (Vandal et al., 2017) 

(Reichstein et al., 2019) 

 

IV. FINANCIAL FORECASTING 
 

 In finance, AI has improved the modelling of stock 

prices and risk assessment. Hybrid models 

combining econometric techniques with neural 

networks have demonstrated improved predictive 

power (Fischer & Krauss, 2018).  

 

A notable example is the use of Long Short-Term 

Memory (LSTM) networks for predicting stock 

market trends based on both historical prices and 

sentiment analysis from news headlines. In the 

study by Akita et al. (2016), LSTM models were 

trained on time-series data of stock prices along 

with textual sentiment extracted from financial 

news using natural language processing (NLP). The 

integration of qualitative sentiment data allowed 

the model to better anticipate market reactions to 

events and news releases. This approach 

demonstrated higher prediction accuracy compared 

to models relying solely on quantitative data. Such 
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AI driven models are valuable tools for traders and 

financial analysts seeking to gain a competitive 

edge in volatile markets, and they underscore the 

potential of combining deep learning with 

alternative data sources for financial forecasting.  

 

LSTM Based Sentiment Enhanced Financial 

Forecasting 

Model Example: LSTM-Based Sentiment-Enhanced 

Financial Forecasting The LSTM-based financial 

forecasting model consists of two main input 

streams:  

 

Historical Price Data: Used as a time-series input 

to model price trends and volatility  

patterns.  

 

Sentiment Scores: Extracted from financial news 

articles and social media using NLP techniques such 

as sentiment analysis and word embeddings.  

 

These inputs are concatenated and passed into an 

LSTM network, which captures long-term 

dependencies in sequential data. The final dense 

layer outputs the predicted stock price or return.  

 

Mathematically, the model predicts the price Pt+1 

Pi+1 at time t + 1 based on previous prices  

Pi-n,..., Pi and sentiment Si .  

Pi+1 = fLSTM([Pi - n. .., Pi], St)  

Where:  

fLSTM is the learned LSTM function,  

 

St is the aggregated sentiment score at time t. This 

architecture allows the model to not only learn 

temporal price trends but also incorporate 

contextual market sentiment, resulting in more 

responsive and informed predictions.  

 

(Akita et al., 2016) 

 

V. CHALLENGES AND LIMITATIONS 

 
Despite their potential, AI models are often 

criticized for their lack of interpretability, overfitting 

risks, and dependency on large, high-quality 

datasets. Integrating domain knowledge into AI 

models and developing hybrid models that retain 

mathematical interpretability are ongoing research 

areas.  

 
Lack of Interpretability 

AI models, particularly deep neural networks, are 

often referred to as "black boxes" because:  

It's hard to understand how and why they make 

certain decisions.  

 

This poses problems in critical domains like 

healthcare, finance, and law, where transparency 

and explainability are essential.  

 

Explainable AI (XAI) is an emerging field trying to 

tackle this through methods like:  

• Feature importance techniques (e.g., SHAP, 

LIME)  

• Model distillation  

• Attention mechanisms  

 

Overfitting Risks 

Overfitting happens when models memorize 

training data instead of learning general patterns. 

This leads to poor generalization on unseen data. 

Causes include: 

• Small or noisy datasets  

• Excessive model complexity  

• Common solutions:  

• Regularization techniques (L1/L2)  

• Dropout layers  

• Cross-validation  

• Data augmentation  

 

Dependency on Large, High-Quality Datasets 

Most powerful AI models (e.g., GPT, BERT, vision 

transformers) are data-hungry.  

 

Quality and bias in training data directly affect 

model performance and fairness.   

Issues include:  

• Expensive and time-consuming data labeling  

• Data privacy concerns  

• Underrepresentation of minority groups  

 

Integration of Domain Knowledge 

Purely data-driven models can ignore well-

established domain-specific rules. Research aims 

to blend:  
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• Symbolic AI (logic-based systems)  

• Neural networks (learning from data)  

• This hybrid approach can improve:  

• Interpretability  

• Data efficiency  

• Trustworthiness of AI systems  

 

Hybrid Models with Mathematical 

Interpretability 
• These models aim to:  

• Preserve the strengths of AI (e.g., pattern 

recognition, adaptability)  

• Retain analytical rigor and theoretical 

transparency of traditional models  

• Examples include:  

• Physics-informed neural networks (PINNs)  

• Neural ODEs (Ordinary Differential Equations)  

• Probabilistic graphical models with neural 

components  

 
Future Directions 

Future work may focus on:  

• Explainable AI to enhance trust and 

transparency in AI-driven models.  

• Integration of symbolic reasoning with neural 

methods.  

• Development of frameworks that combine 

mechanistic and data-driven approaches. 

 

VI. CONCLUSION 
 

AI is reshaping the landscape of mathematical 

modelling, providing tools to model complex 

systems more effectively. While challenges remain, 

the integration of AI into modelling frameworks 

holds great promise for advancing both theoretical 

understanding and practical applications. 
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