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I. INTRODUCTION 
 

Involution has important role in Banach algebra. In 

this paper we discuss self adjoint, hermitian,Banach 

algebra corollary, Gelfand Nahnark Thoeorem, 

isometry and isomorphism studied 

 

II. DEFINITION 
 

A map *x x→  of a complex algebra A into A is 

called an invoution of A if it has the following 

properties for all 
, and .x y A C 

 

(1) 
( )* * *x y x y+ = +

  

(2) 
( )* *x x =

 

(3) 
( )* * *xy y x=

 

(4) **x x=  
2.1 Definition :  

If 
and * ,x A x x =

 then x is called hermitian or 

self adjoint. 

Example :  

f f→
is an involution on C(X) 

2.1 Theorem :  

If A is a Banach algebra with an involution, and if 

,x A
, then  

a) 
*, ( *)and *x x i x x xx+ −

 are hermitian.  

b) x has a unique representation x = u+iv 

where 
,u v A

and u and v are hermitian. 

c) The unit element e is hermitian  

d) x is invertible in A if and only if x* is 

invertible in which case (x*)-1 = (x-1)* and 

e) 
( )iff ( *)x x    

 
 

 

Proof: 

a) 
( *) * ** * *.x x x x x x x x+ = + = = +

  

Hence *x x+ is hermitian. 

[ ( *)]* ( *)* [ * ( *)*] ( * ) ( *)i x x i x x i x x i x x i x x− = − = − − = − − = −

  

( *)* ( *)* * *.xx x x x x=  = 
Hence 

( )*and *i x x x−
and x* are hermitian. 

b) Put 

* ( * )
and .

2 2

x x i x x
u v

+ −
= =

 Then 

x=u+iv. Clearly u, v are hermitian since 

*x x+ is hermitian and also 

( * )

2

i x x−

is 

hermitian. The uniqueness of the 

representation is yet to be proved. If 

` `u iv x+ =  is another representation then 

put ` .w v v= − . Then both w and iw are 

hermitian and 
( )* *iw iw iw iw= = − = −

i.e. 

0iw iw+ =  i.e. 2 0iw =  (ie) ` .v v= . Since 

` , `v v u u= =
 

Hence the representation is unique.  

c) Clearly * *.e ee= . But *ee  is self adjoint. 

Hence e* is self adjoint. Hence e is self 

adjoint. 

d) Since x is invertible 
1 1, . .x s t x x e− − =
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Now 
1 1( )* ( ) * * (x x x x e e− −= = =

e is self 

adjoint) 
1( )*x−

 is the inverce of x* 

But (x*)-1 is the inverse of x* and hence (x-1) = (x*)-1 

e) Let 
( ).x 

 Then 
( )e x −

is not 

invertible. Hence 
( )*e x −

is not invertible 

(ie) 
( *)e x −

 is not invertible. Hence 

( *)x 
 the converse follows 

analogously. 

3. Definition :  

If A is a Banach algebra with an involution *, which 

satisfies the 

2
*xx x=

for every x A  then A is 

called a B* algebra. 

3.1 Theorem :  

If A is a semi simple commulative Banach algebra, 

then involution on A is continuous 

Proof:  

Let h be a homomorphism of A 

Define 
( *),Ø(x)= h x

 

Then 

[ ]* ( * *)Ø(x y) = h x y h x y+ + = +
 

            

( *) ( *) ( ) ( )= h x h y Ø x Ø y+ = +
 

( . ) [( , )*] ( *)Ø x h x h x  = =
 

   ( , *) ( *)h x h x 
= =

 

   
( *)h x= 

 

   
( )x=

 

Similarly 
( ) (( )*) ( * *)Ø xy h xy h y x= =

 

       ( * *)h y x
=

 

    ( *) ( *)h y h x
=

 

    
( *) ( *)h y h x=

 
   

 
( ). ( ) ( ). ( )Ø y Ø x Ø x Ø y= =

 
Hence Ø is a complex homomorphism on A. Then Ø 

is continuous. For, suppose 
,nx x→
 and 

*nx y→
 

in A  

Then 

( *) Ø( ) Ø( ) ( *) ( )n nh x x Lim x Limh x h y= = = =
  

This is true for every .h   

Since A is semisimple x* = y. Hence *x x→  is 

continuous by closed graph theorem. 

3.1 Corollary 

A is a B* algebra, iff 
*x x x A=  

 

and 
* *xx x x=

 

For, we have 

2
* *x xx x x= 

 

Hence 
*x x

  ................... (1) 

Similarly 
* **x x x =

 ......... (2)  

From (1) and (2) 
*x x=

 

Now 

2
* *xx x x x x x= =  =

 

Conversely, we have that if 

* for every and * * ,x x x A xx x x=  = 
 

then 

2
* * .xx x x x x x= =  =

 Hence A is 

a B*-Algebra 

 

 

 

3.2 Theorem: Gelfand-Nahnark Theorem 

Suppose A is a commulative B* algebra, with 

maximal ideal space . . The Gelfand transform is 

then an isometric isomorphism of A onto 
( )C 

 

which has the additional property that 

( *) ( )( , )h x h x x A h=  
 

or equivalently, that 

ˆ( *) ^ ( )
x

x x A= 
 

In particular, x is hermitian if and only if x̂  is a real 

function.  

The above theorem is called Gelfand - Nahnark 

theorem 

Proof: 

Let 
. . *.u As t u u =

 Let .h  We have to prove 

that h(u) is real.  

Put z=u+ite for real t. If 
( )h u i = +

where 
, 

are reals then  

( ) ( ) ( ) ( )h z h u ite h u h ite= + = +
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. ( )i it h e = + +

 

                 
( )i it i t   = + + = + +

 

           
2 2*zz u t e= +

so that 
2 2 22 2 2( ) ( ) *t h z z zz u t + + =  =  +

 

or 

22 2 2 t u t  + +   
 Real  

But this implies that 
0. =

 = 0. Hence h(u) is real.  

If x A , then x u iv= +  with 
*, *u u v v= =

 

Hence * .x u iv= − . Since 
ˆˆ andu 

are real, we have 
^ ^ˆ ˆ( *) ( ) ]( ) for every ( . .)( *) ^

x
x h u iv h h i e x= −  =

 

Thus A is closed under complex conjugation. By 

Stone Weierstrass theorem is dense in 
[ ]C 

 

If 
and *,x A y x x =

 then y = y*. Hence 
22y y=

. By induction, we get that llymi 
mmy y=

 for every 2 .nm =  

Hence 
ŷ y


=

by the spectral radius formula. 

Since y = xx* 

we have 

2ˆˆ ˆ ˆ ˆ ˆ( *)y x x x x x= = =
 

Hence 

22
ˆ ˆ* or .x y xx x x x

 
= = = =

. 

Thus ˆx x→  is an isometry. Hence A  is closed in 

( ).C 
 Since A is also dense in 

( )C 
, we conclude 

that 
ˆ ( ).A C= 

. Hence the proof.  

3.3 Theorem : 

If A is a commutative B* algebra which contains an 

element x such that the polynomials in x and x* are 

dense in A. then the formula 
^ ˆ( )f f o x =

defines 

an isometric isomorphism 
of ( ( ))C x

onto A 

which statisfies. 

ˆ ( )*f f = 
for every 

( ( )).f C x
 More over if 

( ) on ( ) then .f x f x  =  =
  

Proof: 

Let   be the maximal ideal space of A. We know 

that x̂  is a continuous function on  . The range of 

x̂  is 
( ).x

 Suppose 1 2 2
ˆ, and ( ),h h x h

then 

1 2( ) ( )h x h x=
and hence 1 2( *) ( *)h x h x=

by the 

previous theorem. If P is any polynomial in x and x*, 

then 1 2( ) ( )h P h P=
 since h1, and h2, are 

homomorphisms. By hypothesis, the elements of 

the form P(x,x*) are dense in A and since h1, and h2, 

are continuous we have 1 2( ) ( )h y h y=
for every 

.y A
 Hence h1 = h2. Hence we have proved that 

1 2
ˆ ˆ( ) ( )x h x h=

 for every 
.y A
 Hence h1=h2, (i.e.) 

x̂  is 1-1. Since x̂  is continuous and onto 

( ) andx −
we have that x is homeomorphism of 

onto ( )x
 (By Vadiyanatha swamy's theorem). 

The mapping 
ˆf f o x→

is therefore an isometric 

isomorphism of 
( ( )) ( )C x C → 

 which 

preserves complex conjugation. 

By the previous theorem, each fox is the Gelfand 

tranform of a unique elements of A, which we 

denote by 
f

 and which satisfies 
f f


 =

 

[Since we have that 
^ ˆ( *)x x=

 by the previous 

theorem]. We have 
ˆ ( ( ))*.f f = 

. If 
( )f  =

, 

then 
ˆ ˆf o x x=

so that we have 

ˆ ˆ( ) ( ) .f x ie f x =  =
 

We are interested in knowing the existence of 

square roots in a Banach algebra. The following 

theorem is one in that direction. 

3.4 Theorem :  

Suppose A is a commutative Banach algebra with 

an involution. If x is a self adjoint element of A and 

if 
( )x

contains no real number 0  , then there 

exists 
y A

with 
2y x=

and y = y*. 

Proof: 

Let R denote the non positive real numbers and let 

.C R−= − . There exists a holomorphic function 

( )f H 
 such that 

2( )f 
 and f(1) = 1. Since 

( ) ,x 
 we can define 

y A
 as 

11ˆ ( ) ( )( )
2

y f x f e x d
i

  


−



= = −
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Where   is any contour that surrounds 
( )x

in 

. Then it can be proved that y2 = x [For a proof the 

student is referred to Defn and theorem of 

"Functional Analysis" by Rudin. This is the required 

y and y* = y. To prove y*=y we need what is called 

Runge's theorem in complex analysis. 

Since  is simply connected 'Runges'. Theorem 

gives polynomials P, that converge to funiformly on 

compact subsets of  . Define Qn, by 

2 ( ) ( ) ( )n n nQ P P  = +
. Since 

( ) ( )f f =
the 

polynomials nQ f→
 in the same manner [(ie) 

uniformly on compact sets] 

Define 
( ).( 1,2,3,......)n ny Q x n= =

By definition, 

the polynomials nQ
 have real coefficients. Since x = 

x*, if follows that yn, = yn* 

The element 
lim n
n

y y
→

=
, and hence y = y*. if f* is 

continuous. Even if f* is not assumed to be 

continuous we can give a different argument to 

prove that y=y* as follows. 

Let R be the radical of A. Let : \A A R → be the 

quoteint map. Define an involution in A/R by 

 ( ) * ( *) fora a a A = 
 

If a is heremitian, then so is it 
( )a

 

Since  it is continuous, 
( ) ( )ny y →

 

Since A/R is isomorphic to A. A/R is semi simple and 

therefore every involution in A/R is continuous. 

Hence 
( )y

is hermitian. Hence 

( *) 0(ie) *y y y y − = −
is in the radical of A. 

Now we can write y = u + iv where u and v are 

hermitian. Since 
* ,y y R− 

hermitian v belongs to 

the radical of A. Since x = y2 we have 
2 2 2 .x u v iuv= − + . 

Let h be a complex homomorphism on A. Since v is 

in the radical of A, h(v) = 0. Hence 
2( ) [ ( )]h x h u=

By luypothesis 
0 ( ).x

 Hence 
( ) 0h x 

. Hence 

( ) 0h x 
. This is true for every 

(ie)h u
is 

invertible. 

Since x=x* 

and since 
2 2 2 ,x u v iuv= − +

we have that uy = 0 

Since v=u-1 (u v) we have that v = u-1.0 = 0 

Hence v = u and hence y* = u* But u is hermitian 

and hence y* = y 

III. CONCLUSION 
 

It is clear  that A is semi simple  

commutative  Banach  algebra  with an 

involution  which  satisfy involution  on 

A is  continuous,  Gelfand  Nahnork  

theorem  gives isometric  isomorphism  

of A  onto A  which satisfy  certain  

condition  and Runges  theorem  give 

polynomials P, that  converge  to  

uniformly  on  compact subjects.  
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