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I. INTRODUCTION 
 

Commutative Banach algebras make an interesting 

reading. The Banach algebras have a nice theory in 

themselves. The ones that occur to our mind in a 

natural way are the Banach algebras 

[ , ]or [ ]C a b C X
C (a,b) or C[X] which denote the 

continuous real (complex) valued functions on [a,b] 

or a compact T2 space X respy. The theory of 

Gelfand looks very natural 

 

II. DEFINITION 
 

A subset J of a commutative Banach algebra A is 

said to be an ideal if  

1) J is a subspace of A (as a vector space) and  

2) xy J  if x A  and y J  

If ,J A  then J is called a proper ideal. 

Ex.:  

Let [0,1].A C= Let 

{ [0,1]/ (0) 0}J f C f=  =
 

It is easy to check that is an ideal. 

In general if E c [0,1], 

consider 

{ [0,1]/ ( ) 0}EJ f C f E=  = J,  

 

Clearly if , thenE Ef g J f g J +  . 

Also iff and ,Ef J g A  then 

consider ( )g f E   

( ) { , ( ) } { ( ) ( ) / } 0g f E g f x x E g x f x x E=  =   =

 

Hence .Eg f J   

Therefore EJ  ), is an ideal in C[0, 1] 

2.1 Definition :  

An ideal ,J A where A is a commutative Banach 

algebra is said to be a maximal ideal if J is not 

contained in any larger proper ideal. 

Remark : 

Every Commutative Banach algebra A with identity 

e contains a maximal ideal. For let   denote the 

set of all proper ideas of A.  is partially ordered 

by set inclusion Let 1 2 ...A A  be any chain 

(Totally ordered sub collection) of .  Then each Ai 

is a proper ideal of A and 
1

1i

A


=

is also a proper 

ideal. For e Ai  for any i and hence .e Ai
  

Hence any chain in has an upper bound. Hence 

by Zorn's Lemma, there exists a maxi element in  . 

But elements of 
 
are proper ideals and hence   

has a maximal proper a for A. 

2.1 Theorem: 

 Any proper ideal J in a Cummulative Banach 

algebra A with unit element contain any invertible 

clement.  

Proof: 
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Let u be an invertible element. Then 
1u−
exists. If J 

contains u. then 
1uu J−   for 

1andu J u A−   (Since J is an ideal) 

(i.e.) e J   

Hence if , then ,(ie)x A xe J x J   .  

.A J  This is contradiction to the fact that J is 

a proper ideal of A. Hence the result. 

2.2 Theorem : 

It is an ideal in a commutative Banach algebra, then 

J  is also an ideal. 

Proof: 

Let and .x J y A = . Since Jx  there exists a 

sequence of elements nx J  such that .nx x→

. Clearly nx y xy→  as multiplication in A is 

continuous. Further nx y J n   is an ideal. 

Hence .xy J . Therefore J  is an ideal. 

2.3 Theorem :  

(1) If A is a commutarive Banach algebra with unit e, 

then every proper ideal of A contained in a maximal 

proper ideal of A. 

(2) If A is a commutative Banach Algebra, then every 

maximal ideal is closed. 

Proof: 

 Let J be a proper ideal of A. Let = {The set of all 

proper ideals of A which com J) Then 

since .J=   Partially order 
 

by 

inclusion (ie) Define 1 2 1 2if .J J J J   Then we 

can apply Hausdort maximalty principle for  . Let 

L be a maximal total ordered sub collection of  . 

Let I be the Union of members of L Clearly I is an 

ideal forif

1 2 1 2, , then and for some , .x y I x D y D D D L   

 Since L is totally ordered either 

1 2 2 1or .D D D D  Without loss of generality 

let us assume that 1 2.D D Then 2, .x y D

Since 2D , is an ideal 2.x y D+  Hence 

.x y I+  Similarly if andx I y A  , then 

x D  for some .D L  But D is an ideal 

therefore .xy D . Hence .xy I  Therefore I is 

an ideal Obviously andJ I I A   since no 

member of  contains the unit element and 

.c I  This maximality of L implies that I is a 

maximal ideal. For if  M is containing proper ideal 

such that .M J  then, since 

, and .M J M M L    Hence 

{ }L M is a bigger chain than contradicting the 

maximality of L. 

(2) Suppose M is a maximal ideal of A. Then M does 

not contain any invertible elements. But the set G of 

invertible elements is an open set. Hence 

.M G  =  Hence .M A G − Hence M

does not contain any invertible element. Hence M  

is a proper ideal on A. But M is a maximal proper 

ideal and hence .M M= =M is closed. 

Now let us look at the remark that we have 

made, namely it is a proper ideal, so J . Clearly J  

is an ideal. It remains to be seen that J  is proper. 

Since is proper ideal J is contained in a proper 

maximal ideal M. But M is closed. Hence J M . 

Hence J  is proper 

 

III. METHODOLOGY 
 

3.1 Definition :  

Let A and B be commutative Banach algebras over 

C Let Ø:A B.→  

Ø is said to be a homomorphism if 

Ø (x+y) = (x)+Ø(y), for all Ø  

( ) ( ), ,Ø x Ø x for x A C.  =  
  

( ) ( ) ( ) ,Ø x y Ø x Ø y x y A=  
 

Let N be the null space of Ø  

Then 
{ / ( ) 0}.N x A Ø x=  =

 Now N is an 

ideal in A. Since Ø is linear. N is clearly subspace. 

But,if 

and ,then ( ) ( ) ( ) 0x N y A Ø x y Ø x Ø y  = =

. 

Hence 
.x y N
 Consequently N is an ideal in A. 

Now we can see that if Ø  is continuous, then 
1{0}N Ø−=

and since {o} is closed in B, N is a 

closed ideal in A. 
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Suppose J is a proper closed ideal in A and 

: /A A J →  is the quotient map given by 

.x y N
. then A/J is a Banach space with 

x y+
 defined as Inf 

 : .x y y J+ 
 

We can define a multiplication on AJ and make it 

into an algebra Further the nom defined above on 

A/J makes it into a Banach algebra 

The map : /A A J →  is a homomorphism.  

The multiplication in A/J is defined as (x+ 

y)(y+J)=xy+J. This is a well defined product on A/J 

for the following reason. If x+J=x1+J then x-x1J. 

Similarly if y+J=y1+J. then y-y1J.  

We claim that  

(x+J) (y+J) = (x1+J)(y1+J) 

(i e) 

1 1 .xy J x y J+ = +
 This is true if and only if 

1 1 .xy x y J− 
. Hence it and only if 

1 1 .x y xy J− 
 

But we have the following identity namely 
1 1 1 1 1( ) ( ) ( )x y xy x x y x y y− = − + −

 

Since 

1 1and ,x x J y y J−  − 
 we see that 

the right side of the above equation is in J and 

consequently the left side of the above equation is 

in J. Hence the left side is an element of Hence the 

multiplication is well defined. 

It can be now easily checked that A/J is a complex 

algebra. For we have 
( )[( )( )]x J y J z J+ + +

 

( )[ ]x J yz J= + +
 

( )x yz J= +
 

( )xy z J= +
 

( )( )xy J z J= + +
 

[( )( )]( )x J y J z J= + + +
 

Hence the product is associative. Similarly we can 

prove the other requirements of algebra and hence 

A/J is a complex Banach algebra. 

Now : /A A J →  is the usual quotient map. 

Since 
( ) ,x x 

 by the definition of norm on 

A/J we get that  is continuous. Further we have 

that if 1 2, and 0x x A  
 

then 
( )i i ix y x +  +

 for some 

( 1,2)iy J i =
  

Since 1 1 2 2 1 2( )( )x y x y x x J+ +  +
  

we have 

1 2 1 1 2 2 1 1 2 2( ) ( ) )x x x y x y x y x y   + +  +  +

 

so that 

1 2 1 2( ) ( ) ( ) ( ) (*)x x x x    

 

Since  it is an onto map. we have 

1 2 1 2z z z z
 in A/J.  

Further if e is the identity of A, then 
( )e

 is the 

identity of A/1. 

But 
( )e e J J = + 

 and hence 
( ) 0e 

  

Since 
( )x x 

 for every x. we have that 

( ) 1. (*)(*)e e  =
 

But we have 

( ) ( ) ( ) ( ) ( ) from(*)e e e e e     
 

(i e) 
( )

22 ( )e e 
 

(i e) 

2
( ) ( )e e 

 

(i e) 
( ) 1.e 

 

 By combining with (*) (*) we get that 
( ) 1e =

 

 
( )e

is the identity of A/J  

A/J is a Banach algebra. 

Remark :  

As has been remarked earlier, any complex nonzero 

homomorphism of A C→ is called a 

multiplicative linear functional. These multiplicative 

linear functionals (complex homomorphisms) play 

an important role in the study of the Banach 

algebras.  

We now consider the set A of all complex 

homomorphisms of A. We now give a topology on 

A and make it into a compact T2, space. Each 

element of A will be viewed as a continuous 



 S.R.Gadhe.  International Journal of Science, Engineering and Technology, 

 2025, 13:2 

 

4 

 

 

function on   and hence A will be viewed as a 

subset of 
[ ]C  =

set of all continuous complex 

functions on . . One will be naturally tempted to 

ask wherther 
?A C= 

 If not what conditions 

on A will make it equal to C( )? 

3.1 Theorem:  

Let A be a commutative Banach algebra with e. Let 

  be the set of all complex homomorphisms of A 

then every maximal ideal of A is the kernel of some 

h . 

Proof: 

Let M be a maximal ideal of A. Then we know that 

M is closed in A. Hence A/M is a Banach algebra. 

Choose .x A M − . 

Let 
{ and }J ax y a A y M= +  

 

Then x J . Also J is an ideal. I clearly contains M 

and hence J strictly contains M as .x J M −  

This forces J to be equal to A. Since M is the 

maximal ideal in A. 

Hence 
ax y e+ =

for some 
,a A y M 

 

If : /A A M →  is the quotient map, we have 

( ) ( ) ( ).a x e  =
 Hence every non zero 

elements 
( )x

of the Banach algebra A/M has an 

inverse in A/M. By Gelfand-Mazur theorem, there 

exists an isomorphism Ø:A/M→C. Put 
h=Ø o .

 

Then :h A C→  and since both 
and Ø

it and 

are homomorphism h is a homomorphism of 

.A C→  The null space of this homomorphism is 

clearly M. Hence we have he A whose null space is 

M. 

3.2 Theorem:  

Let A be a commutative Banach algebra with e and 

let   be the set of all complex homomorphisms 

on A. If h  then kernel h is a maximal ideal of 

A. 

Proof: 

Clearly ker h = Null space of his an ideal of A. 

Algebraically (A/ker h) is isomorphic to complex 

numbers. Hence ker h is a maximal ideal. For if 

M Ker h



 is an ideal and 

A
Ø C

Ker h
 →

 

given by 
Ker h  then Ø(M)x+ x→

 is an 

ideal in C. But since C has no proper ideals, either 
-1Ø (Ø(M))=M

is the whole of A or zero. 

Hence Ker h is clearly a maximal ideal. 

3.3 Theorem:  

Let A be a commutative Banach algebra and   

denote the set of all complex homomorphism on A. 

An element x A  is invertible in A if and only if 

( ) 0h x 
 for every h .   

Proof: 

Let x A  be invertible. Then 
1 .x A−  . If h is a 

complex homomorphism then 
1 1( , ) ( ) 1 ( ) ( ).h x x h e h x h x− −= = =

 Hence 

( ) 0.h x 
 Conversely if 

( ) 0h x 
for any h

, then x any maximal ideal of A. 

Suppose x be not invertible. Then 

{ }I ax a A= 
is an ideal of A. 

But this ideal is contained in a maximal ideal M and 

hence there exist a complex homoorphism h  

such that 
( ) 0h M =

  and hence 
( ) 0h x 

: 

contradiction. x A   is invertible. 

3.4 Theorem:  

Let A be a commutative Banach algebra and let   

be the set of all complex homomorphisms of A. An 

element x A  is invertible if and only if x lies in 

no proper ideal of A. 

Proof : 

If x lies in no proper ideal of A, then x does not lie 

in any maximal ideal. Hence, for so 

, ( ) 0.h h x =
. Hence by previous theorem x is 

invertible. Conversely if x is invertible and 
,x I
 

for a proper ideal I. then since 
1 1, .x A x x I e I− −   

and hence I=A. 

which contradicts the fact I is a proper ideal. Hence 

the theorem. 
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3.5 Theorem:  

Let A be a commutative Banach algebra and Let A 

denote the set of all complex homomorphisms on 

A. 
( )x 

if and only if 
( )h x =

 for some 

.h . 

Let 
( ).x 

. Thus 
( )x e−

 is not invertible. 

Hence for some
, ( ) 0h h x e − =

 (ie) 

( ) ( ) .h x h e = =
 Conversely if 

( )h x =
for 

some h, then 
( ) 0.h x e− =

 Hence 
( )x e−

 

belongs to the null space of h which is a maximal 

ideal. Therefore by the above theorem 
( )x e−

 is 

not invertible and hence 
( )x 

. 

Examples  

Find the maximal ideals of 
[0,1]C

. It is an exercise 

for the student to prove that for any 

0 0[0,1],if : [0,1]xx h C C →
 is given by 

0 0( ) ( ),xh f f x=
 then h is a complex any 

[0,1]C
 its kernel is 

0 0{ [0,1]/ ( ) 0}xM f C f x=  =
 By the 

theorems we have proved 0xM
is a maximal ideal 

of 
[0,1]C

. It is interesting to note that any 

maximal ideal of 
[0,1]C

occurs in this form. 

Further if 0 0x y
 are elements of [0,1] then 

0 0.x yM M
. Since by Urysohn’s lemma we can 

always find a continuous function on [0,1] which 

vanishes at 0x
 but not at 0.y

. Hence we find a 

one-one correspondence between points of [0,1] 

and the points of .  

 

 

II. CONCLUSION  
 

  It is  clear that ideal is  contained  maximal ideal  

M and there  exist  complex homomorphism. Every 

element in commutative Banach algebra A is  

invertible if it is  no proper  ideal of A.  It is there  is 

relation  between  commutative  clear that  Banach 

algebra, complex  homomorphism  and  maximal  

ideal.   
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