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Abstract- In this article, we examine a new double transform which is a com- bination of ARA transformand Sawi
transform (double ARA-SW). We present some basic properties of double ARA-SW transform like linearity,
shifting, ex- istance and uniqueness and double convolution theorem. We proved some important results of double
ARA-SW transform related to partial derivatives. In order to show that useablity of double ARA-SW transform,

some examples of partial differential equation are illustrated.
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I. INTRODUCTION One such innovative transform is the Soham
transform, which has shown promise in solving
Integral  transforms are essential tools in various integral equations and modeling real-world

phenomena [7,8]. Building on this, the Double
Soham Transform is introduced as a new extension.
This new transform offers a powerful framework for
tackling boundary value prob- lems and other
mathematical challenges. This paper explores the
theory behind the Double Soham Transform and
showcases its practical applications. By extending
the principles of existing double integral transforms

mathematics, providing a way to sim- plify complex
functions for easier analysis and problem-solving.
By transforming a problem from one domain (such
as time or space) into another (like frequency or
spectral domain), these methods allow for more
manageable computations, es- pecially when
dealing with differential, integral, and partial
differential equations. Classical transforms like the

Laplace and Fourier transforms have been widely
used in various fields of science and engineering for
many years [1,2]. Recently, how- ever, new
variations and combinations of these transforms
have been developed to handle more complicated
problems. These include the Double ARA-Sumudu
trans- form [3], the Laplace-ARA transform [4], and
even the Triple Shehu transform [5]. These newer
methods expand the toolbox for solving advanced
issues like fractional differential equations,
boundary value problems, and integral equations
[4,6]. The value of these transforms is clear—they
provide practical solutions to mathematical
problems that might otherwise be intractable in
their original forms. Whether in physical sciences,
engineering, or applied mathematics, they offer
efficient ways to analyze complex systems.

like the Double ARA-Sumudu and Double Sawi
transforms [3,9], we demonstrate how the Double
Soham Trans- form can become a valuable tool for
solving a wide range of problems more effec- tively.

Key words and phrases. ARA transform, Sawi
transform, double ARA-Sawi transform and partial
differential equation.

The paper is organized in a way that builds up the
concept step by step. It starts with Section 2, where
the basics of the Soham transform are explained,
covering its definitions and properties. Then, in
Section 3, the author introduces a new idea: the
Double Soham Transform. Section 4 takes this
further by showing how the Double Soham
Transform can be applied to various functions. In
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Section 5, the paper dives into proving some key
properties of the Double Soham Transform. Moving
on to Section 6, the author applies this transform to
solve partial differ- ential equations (PDEs), with a
few practical examples. Finally, Section 7 wraps
things up with a conclusion, summarizing the key
points and findings.

Preliminaries

Laplace transform. Let y : (0, ©) — R represent a
real-valued function. The single Laplace transform
of y can be written as:

I oo

H(s) = L[u(T)] = e-sT p(t) dt,
0

seC. (1)

Double Laplace transform. Let p : (0, ) — R
represent a real-valued function. The single Laplace
transform of p(t, y) can be written as:

J oo Joo

Lt Ly[u(T, y)] = p(s, p) = e-(st+py)u(t, y) dtdy, (s,
p)eC. (2.2)

0 0

Shehu transform. The single Shehu transforms (ST )
of a real-valued func- tion f (g, t), with respect to
the variables g and t, are described by the following
definitions:

Sq (f (q, ©) = F (h, m) =

(o]

e-(hq)

0

f (g, t)dq (2.3)

St(f(q, ) =F(i,n)=

(o]
e—(it)
0

f (g, t)dt. (2.4)

Double Shehu transform. The double Shehu
transform (DST ) of the func- tion f (g, t) is
described by,

2 Joo[oo —(hg+it)

Sqtlf (g, t)] = F [(h, 1), (m, n)] = 0

2.5. Soham transform (S).
e mn

0

f (g, t)dqdt. (2.5)

Definition 2.1. The Soham transform operates on a
well-defined set of functions

gly)y=20

D = {g(y) : 3M, v1, v2 > 0 such that g(y) < Mely|kj ,
ify € (=1)j x (0, )}

using the provided formula,

S gyl = | gy)e-u ydy = G(u)
(2.6)

1 oo

uo

The Soham transform, along with its inverse, is

described using the following for- mulas. These

definitions apply foru > 0

S -1GW] = gly) = 1
(2.7)

21 P—ico u

[ B+ico 1 eu yG(u)du.

Remark 2.2. If a = 1,
Slgy] =1 [ o
g(y)e-uydy = G(u) y 2 0,
uo

this is the definition of Aboodh transform.
Remark 2.3. If a = -1 then,

1[0 1

S [g(y)] = giy)e- uydy = G)y 2 0, (2.9) 0
this is the definition of Sumudu transform.
Remark 2.4. If o = -2 then,

Slgyl=1]o

gly)e

— Tyu

dy = G(u) y 2 0,(2.10)

uo

this is the definition of New integral transform.

(2.8)

Double Soham Transform (DST)

This section describes the definition for double
Soham transform and its inverse.

Definition 3.1. The double Soham transform of the
function g(y, t) can be ex- pressed as follows:
S2[g(y, )] = G(u,v) = 1 [ o [ o0 e-uy-vptgly,
t)dydt, u>0,v >0, (3.1

yt uv 0 O

provided the integral converges, the inverse of
double Soham transform is expressed as:

S =2[G(u, V)] =gly, t) = 1 [ w+ice [ A+ice 1 eu
y+Vv G(u, v)dudv.(3.2)

uv 2Tl W—ioco A—ico uv
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Double Soham  Transforms For Some
Fundamental Functions

@) Let g(y, t) = 1 then

S2[1] = 1

yt (uv)a+1

2) Let g(y, t) = yntm, n m=20 1 2.
then

S2[yntm] = 1

n! m!

yt uv u(n+T)av(m+1)B

3) Letg(y, ) =yalta2, al > -1, a2 > -1
then

S2[yalta2] = 1T(al + ) (a2 + 1),

yt uv u(a1+T)av(a2+1)B

where TI'. is the Euler gamma function.
4) Let g(y, t) = eay+bt then
S 2 [eay+bt] = 11
yt
Consequently
uv (ua — a)(vB - b)
S2 ei(ay+bt) = 1 1
2 uab + vpa
Syt[sin(ay + bt)] = uv(u2a + a2)(v2p + b2)
2 uavp - ab
Syt[cos(ay + bt)] = uv(u2a + a2)(v2p + b2)
S2[sinh(ay + bt)] =1 1 - 1
S2[cosh(ay + bt)] =1 1 + 1
Existence and uniqueness of double Soham
transform.
Theorem 4.1. Let g(y, t) be a continuous function
defined on any finite intervals
(0,Y)and (0, T), and of exponential order, implying
that for some a, b € R
9y, t)|
sup
y,t>0
eay+bt < oo,
then the double Soham transform of g(y, t) exists.
Proof. By applying the definition of double Soham
transform,
1 fofo o B
S2[gly. t)] =
e-u
y-v tg(y, t) dy dt
yt uv0 O
1 [ oo [ o e-uy-vpt|g(y, t)|dydt
uv 0 O

M [ oo [ 00 e—u y-vp teat+btdydt

uv 0 O
<M e—(ua
(o]

-a)ydy

e—(vB —b)tdt
uv 0 O

M

= uv(ua - a)(vp - b)

Theorem 4.2. Let g(y, t) and f (y, t) be a continuous
functions and having the dou- ble Soham transform
S2[gly, t)Yland S 2 [f (y, t)] resp. If S2 [g(y, t)] =S 2
[f (v, )]

yt yt

then g(y, t) = f(y, 1).

yt yt

Proof. Assume aland a2 are sufficiently large, then
gly, ) =S-2[S2g(y,t)] = 1 [ al+icceuydu 1 [
o2+ico evptdv

We conclude that, yt

1 [ al+ico

21 o

al-ico

1 [ a2+ico

2

B

a2—-ico

9y, b =

21 al—ico

1 al+ioco
= eu ydu

1 [ oa2+ico
evptS 2 f (y, t)dv
2mi

al-ico

21

yt

a2—-ico

=f(y. 1

euydu ev tS 2 g(y, t)dv
2Tt o2 —ioo

Basic Properties of Double Ara-Sw Transform
Shifting property. If the double double ARA-Sawi
transform of function

g(x, y) is a function G(s, u) then for any pair of real
constants o, > 0

AS eox+Byg(x, y) = S Gs-a, u
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Proof. By using definition of double D double ARA-
SW transform,

AxSy eox+Byg(x,y) [ |
+ox+Byg(x, y)dxdy

S o o y

uz 0 0

(o] (o]

€e—SX—

I wn

2

e-[(s-o)x+( 1 -B)y]
g(x, y)dxdy
u 0 0

AS eox+Byg(x, y) = s
Xy (s —a)(1 - Bu)2
1-Bu

Gs-a, u

Linearity property. If the double ARA-SW transform
of functions g1(x, y) and g2(x, y) are G1(s, u) and
G2(s, u) respectively, then double ARA-SW
transform of ag1(x, y) + Bg2(x, y) is given by aG1(s,
u) + BG2(s, u), where o, B are arbitrary constants.
AxSylag1(x, y) + Pg2(x, y)] = aG1(s, u) + PG2(s, u)
proof:

s

AxSylag1(x, y) + Bg2(x, y)] =J eo [ oo

e—(sx+ y)lag (x, y) + Bg (x, y)ldxdy

S Joof oo

u2 0

—
8
<

® O I (, O
o
Q 8

—(sx+ u)g1(x, y)dxdy + B
u2 0
—(sx+ u)g2(x, y)dxdy

® O

w O

J oo [ oy
AxSylag1(x, y) + Bg2(x, y)] =
y)dxdy

u2 0 0

S 0o

+B

e—(sx+y)g (x, y)dxdy

u2 0 0

AxSylag1(x, y) + Bg2(x, y)] = aG1(s, u) + PG2(s, u)

e—(sx+ )9 (x,

Change of scale. Let G(s, u) be the double ARA-
SW transform of function

g(x, y), then for o and B are positive constants, we
have

ASI[glax, By)l =1G s, Bu

Proof: Using the definition of double ARA-SW
transform we get, s

AxSy[g(ax, By)] =

Jeof oo

e—(sx+ y)g(ax, Py)dxdy

uz 0 0

set { = ax, N = By then

s Joofoo(sC+ n)

AxSylg(ox, By)] = af

ea Bu

0

g(¢, n)dZdn

ASI[glax By)l =1G s, Bu

Derivative properties.

IfS 2 [g(y, t)] = G(u, v) then

S2 dgly, t) =uaG(u,v)-1S[g(0, t)]
yt oy u

Proof:-

S2dg(x,y)=1 [oo [ oo

e-u

y-vBt

ag(y. t)

dydt

yt dy

1 oo

uv 0 O

B [ oo

dy

a ag(y, t)

Now,
=uv 0
e-v tdt
0
e-uy
dy

gy

(5.1)
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[ oo 0
oo e-uy
+ ua oy2 dy
0 1 oo
o = e-vp tdt
0o e-uay
e-u ag(y, t) o
0 e
gly, t)dy + ua
= -g(0, t) + ua e-uy
0 a9y, )
e-u dy
yg(y, idy uv 0
S2 dgly, t) = 1 [
1 oo ay 0
evfBtg(0, t)dt + B dg(0, t)
ua [ oo [ oo 0 oy
e—(u
y+vBt)g(y, t)dydt ==
yt oy uv 0
uv 0 e-vt
uv 0 O dt + ua
= uaG(u, v) - 1S [g(0, tlu oy

uaG(u, v) -
If S 2 [g(y, t)] = G(u, v) then u S [g(0, 1]
S2 ag(y, t) =VvBG(u,v) - 1S[gly, 0)] 2 029(y, 1)
Proof:- Proof of this property is same as proof of -109G(0, t) 2a
(5.4.1). (a=1)
54.3. IfS2][gly, )] = G(u, v) then Syt
2 029(y, t) dy2
-10G(0, 1) 20 = +u
(a-1) u oy
Proof. G(u,v) —u
029y, t)
1 [oo[ oo G(0, v).
e-u
y-vfB t If S 2 [gly, t)] = G(u, v) then
a2g(y. t) 2 029(y, 1)
dydt -1 0G(y, 0) 2B
yt dy2 B-1
1 oo Proof.
uv 0 O a2g(y, t)
B fw 1 foofoo
oy2 e-u
a 629()/: t) y_VB t
= 029(y, t)
uv 0

e-v tdt
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dydt

yt ot2
1 oo
= uv

e-u

0 0
(o]

ydy
e-vfBt

ot2
a2g(y. t)
dt

1 oo

uv 0

a

0

B og(y, t) e
ot2

I oo

B og(y. t)
=uv 0
e-u

ydy
e-vt

ot

+ vf

0 0
e-vt dt
ot

1 oo
e-uy
ag(y. 0)
dy + vB
vBG(u, v) -
1S [g(y, 0)]
uv 0 ot
2 OZg(x, Y)
-1 0G(y, 0)
B-1)

Syt

ot2

= +v
Y% ot
G(u,v) - v
G(u, 0).

2B

If S 2 [g(y, )] = G(u, v) then

2 92g(y, t)
-19G(0, t)
(a=1)
Proof.
929(y, t)
1 J'ooJ'oo
e-u
y-vBt
a29(y, t)
dydt

yt dyot
1 oo
= uv

e-u

0 0

[ee]

ydy
e-vBt
Oyat
a2g(y. t)
dt

1 [ oo
uv 0

o

0

B ogl(y, t) e
oyot

[ oo

B ag(y. )
=uv 0
e-u

ydy
e-vt

dy

+ Vvp

0 0
e-vt dt
dy

1 o)
=-e-uy
ag(y. 0)
dy +

VB f oo [ oo
e-u
y-vfBt
agly, t)
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dydt

uv 0 Ody uv 0 O oy
1 [ oo o
= - -g(0, 0) + ua
uv 0

e-u

yg(y, 0) dy

vp ©

+

e-vp tdt

(o.0]

—g(0, t) + ua

e-u

yg(y, t) dy .

uv

2 029(y. t)

0

-9(0, 0)

ua 0G(y, 0)

0

v 0G(0, t) of
Syt

Oyot

uv %
oy u
+UvV

ot

G(u, v

Applications

Example 6.1.

with the conditions,

ag(y, t)

gy

99(0, 1)

= 0ot

(6.1)

gy, 0) =y, 900, ) =t.  (62)
Solution:

1 1

S [g(y, 0)] = v2B+1, S [g(0, t)] = u2a+1

vBG(u, v) = 1S [g(0, t)] = uaG(u, v) = 1S [g(y, 0)]

(6.3)

v

(VB — u)G(u, v) = 1
uv2p+1

vu2a+1 — uv2fB+1

u

1

— vu2a+1

1

G(u, v) = X
uvu2o+1v2p+1 (VB - ua)
1 1

Example 6.2.

G(u, v) = ua+1v2B+1 + u2a+1vp+1 (6.4)

gy, =y +t

og(y, t) + 0g(0, t) = et(1 +vy) (6.5)

oy ot

with the conditions,

Solution:

gy, 0) =y, 9(0,t)=0. (6.6)

1

S [g(y, 0)] = v2B+1,

vBg(u, v)- 1S g(0, t)+uaG(u, v)- 1 S g(y, 0) =
1+ 1(6.7)

B o 1 vB + 1

vB + 1 1
G(u, v) = u(uat = 1)v2B+1 + uv2p+1
1
x (ua + vp)

Example 6.3.

G(u, v) = u(ua = 1)v2B+1 (6.8)
gy, t) = yet.

with initial conditions,

a2g(y. t)

oy2 +

a2g(y. t)

ot2 -49(y,t)=0 (6.9

and boundary conditions,

gly, 0) =y, dg(y, 0) = e-2y (6.10)
ot

09(0, t)

90, 1) =t

= -2t. (6.11)

oy

Solution:

S[g(y. 0)] =0, S dg(y, 0) = 1
S[gO, 1= 1 ,S dg0,t) =

|
[\
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v2BG(u, v) - vB-1S [g(0, t)]-v-1S dg(0, t) +
u2aG(u, v) = ua-1S [g(y, 0)] dy
—u-1Sog(y, 0) - 4G(u,v) =0 (6.12)
ot
vp 2 1
1
G(u, v) =
vu2o+1 — v(u2a+1) + uv(vp + 2)
1
u2a +v2p -4
G(u, v) = vu2o+1(vf + 2) (6.13)
gy, t) = te-2y

I1. CONCLUSIONS

The paper presents a new mathematical tool called
the Double Soham Trans- form. It aims to make
solving complex problems, like fractional
differential equa- tions, easier. This transform builds
on well-known methods like Laplace and Fourier
transforms but offers a more powerful approach for
tackling advanced equations. The paper explains
how the Double Soham Transform works, proves its
key prop- erties, and shows how it can be applied
to solve real-world mathematical challenges more
effectively.
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