
Rebecca Dias 2019, 7:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2019 Rebecca Dias. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

From Monolith to Microservices a Jboss and Tomcat

Migration Guide for Cloud Computing
Rebecca Dias
 Goa University

I. INTRODUCTION

Background on Monolithic Architectures

Monolithic applications have historically dominated

enterprise IT environments, particularly for Java-

based workloads running on application servers such

as JBoss and Tomcat. In monolithic architectures, all

components of an application—presentation,

business logic, and data access layers—are tightly

coupled and deployed as a single unit. While this

design simplifies initial development and

deployment, it introduces significant challenges over

time, particularly as applications grow in complexity.

Scaling monoliths often requires scaling the entire

application, leading to inefficient resource usage and

increased infrastructure costs. Additionally, tightly

coupled components can slow down deployment

cycles, impede fault isolation, and create bottlenecks

for teams attempting to implement agile practices.

These challenges have prompted enterprises to

explore more modular, flexible alternatives that can

accommodate rapid innovation and cloud adoption.

Rise of Microservices in Cloud Computing

Microservices architecture has emerged as a

preferred solution for modern enterprises seeking

agility, scalability, and resilience in cloud

environments. By decomposing applications into

loosely coupled, independently deployable services,

microservices enable organizations to scale specific

components as needed, improve fault tolerance, and

streamline continuous delivery pipelines. Cloud

computing further enhances the benefits of

microservices by providing elastic infrastructure,

automated provisioning, and seamless

orchestration. Application servers such as JBoss and

lightweight containers like Tomcat are increasingly

utilized in microservices deployments, providing

enterprise-grade support for Java EE applications

while facilitating containerization and cloud-native

Abstract- Enterprises running monolithic Java applications on JBoss and Tomcat face increasing challenges in

scalability, maintainability, and integration with cloud-native technologies. Microservices architecture offers a

modular, flexible alternative that enables independent deployment, improved fault isolation, and operational

agility. This review examines strategies for migrating monolithic JBoss and Tomcat applications to microservices,

covering code refactoring, containerization, middleware integration, and orchestration in hybrid and cloud

environments. It highlights automation through CI/CD pipelines, security and compliance considerations, and

monitoring for performance optimization. Case studies from both large enterprises and mid-sized organizations

demonstrate practical applications, lessons learned, and business impacts, including operational efficiency, cost

optimization, and accelerated innovation. Emerging trends, such as serverless computing, AI-driven DevOps, and

evolving middleware ecosystems, are discussed to provide guidance for organizations seeking sustainable and

scalable modernization. This article serves as a comprehensive roadmap for IT architects, developers, and

enterprise decision-makers pursuing microservices migration and cloud readiness.

Keywords- Monolithic Applications, Microservices Architecture, JBoss, Tomcat, Cloud Computing,

Containerization, CI/CD Automation, Middleware Integration, Security and Compliance, IT Modernization.

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

2

integration. The combination of microservices and

cloud computing empowers organizations to

respond rapidly to changing business requirements,

implement DevOps practices, and optimize resource

utilization across hybrid and public cloud

environments.

Objective and Scope

This review aims to provide a comprehensive guide

for migrating monolithic Java applications hosted on

JBoss and Tomcat to microservices-based

architectures optimized for cloud computing. It

examines technical strategies for application

decomposition, containerization, and middleware

integration, along with operational considerations

including automation, CI/CD pipelines, monitoring,

and security. The article also addresses

organizational and business impacts, highlighting

the benefits of increased agility, scalability, and

efficiency. By presenting real-world examples, best

practices, and lessons learned, this review serves as

a practical roadmap for IT architects, developers, and

decision-makers seeking to modernize enterprise

applications while aligning technology adoption

with strategic cloud initiatives.

II. OVERVIEW OF JBOSS AND TOMCAT

JBoss Application Server

JBoss, now known as WildFly, is a robust Java EE

application server widely used in enterprise

environments to host complex, mission-critical

applications. It provides full support for Java EE

standards, including EJB, JMS, JPA, and web services,

making it suitable for large-scale, transactional

applications. JBoss offers features such as clustering,

high availability, and integrated middleware

capabilities, which are essential for enterprises

seeking reliability and performance in distributed

environments. Its modular architecture allows

developers to extend functionality and integrate with

external services, while built-in management tools

simplify administration and monitoring. In the

context of microservices migration, JBoss can host

decomposed service components, providing

enterprise-level features while supporting

containerization and cloud deployment.

Apache Tomcat

Apache Tomcat is a lightweight, open-source servlet

container and web application server that primarily

supports Java Servlet, JSP, and WebSocket

technologies. Unlike JBoss, Tomcat does not provide

full Java EE support but offers a simpler, more

resource-efficient platform ideal for hosting web

applications or individual microservices. Its

lightweight nature makes it highly suitable for

containerization and deployment in cloud

environments, allowing organizations to run multiple

instances efficiently while optimizing resource usage.

Tomcat’s simplicity and speed have made it a

popular choice for microservices that require low

overhead, fast startup times, and easy scaling in

containerized architectures.

Comparative Analysis

JBoss and Tomcat serve complementary roles in

enterprise Java environments. JBoss is ideal for

applications requiring full Java EE functionality,

transactional integrity, and enterprise-grade

clustering, while Tomcat excels in lightweight, web-

focused microservices deployments. During

migration from monolithic architectures,

organizations often leverage JBoss for critical

backend services and Tomcat for stateless, front-

end, or API-driven components. Both platforms

support containerization and integration with CI/CD

pipelines, making them suitable for hybrid cloud

adoption. Understanding their strengths and

limitations is crucial for designing an efficient,

modular microservices architecture that balances

performance, scalability, and operational simplicity.

III. MIGRATION STRATEGIES

Assessment and Planning

Successful migration from monolithic Java

applications to microservices begins with

comprehensive assessment and planning.

Organizations must first perform a detailed

inventory of all application components,

dependencies, and workflows. Understanding which

modules are tightly coupled or critical to business

operations is essential for prioritizing migration

efforts. Dependency mapping helps identify

integration points, database interactions, and shared

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

3

resources that require careful consideration during

decomposition. Additionally, risk analysis and

downtime planning ensure minimal disruption to

business operations. A phased migration plan,

including pilot projects and incremental

deployment, allows teams to validate strategies and

adjust approaches before scaling across the entire

application stack.

Migration Methodologies

Several methodologies can guide the transition from

monolith to microservices. The strangler pattern

gradually replaces parts of the monolithic

application with microservices, allowing incremental

migration without complete system downtime.

Decomposition by business capability involves

breaking the monolith into independent services

aligned with specific business functions, improving

modularity and maintainability. API-first approaches

emphasize designing services around well-defined

APIs, enabling interoperability between new

microservices and remaining monolithic

components. Enterprises may choose a combination

of these strategies depending on application

complexity, criticality, and resource availability.

Incremental migration often reduces risk while

allowing teams to learn and refine deployment

practices throughout the process.

Tooling and Automation

Automation plays a pivotal role in modern

microservices migration. CI/CD pipelines enable

continuous integration, testing, and deployment,

ensuring that services can be released independently

without impacting other components. Build

automation and containerization tools, including

Docker and Kubernetes, provide standardized

environments, simplify scaling, and facilitate hybrid

or cloud deployment. Configuration management

platforms such as Ansible, Puppet, and Terraform

help automate infrastructure provisioning, service

configuration, and policy enforcement. By leveraging

these tools, organizations can accelerate migration,

reduce human errors, maintain consistency across

environments, and achieve repeatable, reliable

deployments.

IV. TECHNICAL IMPLEMENTATION

Code Refactoring and Modularization

Migrating monolithic Java applications to

microservices requires extensive code refactoring

and modularization. The monolith must be

decomposed into independent, loosely coupled

services, each handling a specific business capability.

This process involves separating presentation layers,

business logic, and data access components while

ensuring minimal disruption to existing functionality.

Refactoring may include rewriting tightly coupled

modules, decoupling shared libraries, and adopting

standard APIs for inter-service communication.

Proper modularization improves maintainability,

facilitates independent deployments, and enables

teams to scale services individually based on

demand.

Containerization and Deployment

Containerization is a key enabler for deploying

microservices in hybrid or cloud environments. Both

JBoss and Tomcat services can be packaged into

Docker containers, providing isolated, consistent

runtime environments that simplify deployment and

scaling. Kubernetes or OpenShift orchestration

platforms manage container scheduling, service

discovery, and horizontal scaling, ensuring high

availability and resilience. Containers also allow for

rapid rollback in case of failures and facilitate

continuous integration and deployment pipelines.

By standardizing deployment environments,

containerization reduces operational complexity and

ensures reproducibility across development, testing,

and production.

Middleware and Integration

Effective middleware and integration strategies are

critical to maintain interoperability between

microservices and remaining monolithic

components during migration. Messaging systems

such as RabbitMQ, Kafka, or JMS enable

asynchronous communication and decouple service

dependencies, improving scalability and fault

tolerance. API gateways manage routing, load

balancing, and security, providing a single entry

point for service consumption. Integration with

legacy databases may involve data replication,

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

4

service facades, or temporary bridging solutions

until full microservices adoption is achieved. These

practices ensure continuity, minimize disruption, and

facilitate incremental migration while enabling a

smooth transition to cloud-ready architectures.

V. SECURITY AND COMPLIANCE

Application Security

Security is a critical consideration when migrating

monolithic Java applications to microservices. Each

microservice must implement authentication,

authorization, and secure communication protocols

independently. Techniques such as OAuth2, JWT

(JSON Web Tokens), and role-based access control

(RBAC) can enforce fine-grained access policies.

Additionally, inter-service communication should

utilize encrypted channels (TLS/SSL) to prevent

interception or tampering. Containerized services

must also adhere to secure coding practices,

vulnerability scanning, and runtime security policies

to reduce exposure to attacks in hybrid or cloud

environments.

Data Protection

Distributed microservices architectures introduce

complexities in managing sensitive data. Enterprises

must ensure data confidentiality, integrity, and

availability across multiple services and deployment

environments. Encryption at rest and in transit,

secure key management, and tokenization strategies

are essential to protect data during migration and in

production. Data consistency and transaction

management across decoupled services require

careful planning, including the use of eventual

consistency models, distributed transaction

protocols, or middleware-driven orchestration to

avoid data anomalies.

Regulatory Considerations

Compliance with regulatory standards such as GDPR,

HIPAA, PCI-DSS, and industry-specific mandates is

paramount in cloud and hybrid deployments.

Enterprises must ensure that microservices adhere to

data residency, audit, and retention policies.

Centralized logging, monitoring, and audit trails are

critical to demonstrate compliance during

inspections and internal audits. Automation tools,

including Ansible, Terraform, and OpenSCAP, can

enforce security baselines, configuration policies,

and continuous compliance checks, helping

organizations maintain regulatory alignment without

sacrificing operational efficiency.

VI. PERFORMANCE AND MONITORING

Metrics and Observability

Monitoring and observability are critical for ensuring

the reliability and efficiency of microservices

deployed on JBoss and Tomcat. Enterprises must

capture key performance metrics such as response

times, throughput, error rates, and resource

utilization for each service. Observability tools like

Prometheus, Grafana, and ELK Stack provide real-

time insights, enabling administrators to identify

bottlenecks and optimize system performance.

Distributed tracing tools, including Jaeger and

Zipkin, help track requests across multiple services,

revealing dependencies and latency sources in

complex architectures.

Load Balancing and Scaling

Microservices architectures require dynamic load

balancing and scaling to accommodate fluctuating

workloads. Kubernetes, OpenShift, and cloud-native

load balancers automatically distribute requests

across service instances, ensuring high availability

and fault tolerance. Horizontal scaling allows

additional service replicas to be deployed when

demand increases, while vertical scaling optimizes

resource allocation for individual containers.

Autoscaling policies, informed by monitoring

metrics, help maintain performance under variable

loads while reducing infrastructure costs.

Logging and Tracing

Centralized logging is essential for troubleshooting

and operational transparency in microservices

deployments. Logs from JBoss and Tomcat services

should be aggregated, normalized, and correlated

using log management platforms. This approach

simplifies error diagnosis, performance tuning, and

audit compliance. Distributed tracing further

enhances visibility by tracking transactions across

services, allowing teams to pinpoint latency issues or

failed interactions. Implementing structured logging,

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

5

log retention policies, and anomaly detection

mechanisms ensures operational efficiency and

proactive issue resolution.

VII. BUSINESS IMPACT

Operational Efficiency

Migrating from monolithic applications to

microservices on JBoss and Tomcat significantly

enhances operational efficiency. Decoupled services

enable independent deployment and maintenance,

reducing downtime and minimizing the impact of

changes on other components. Automation through

CI/CD pipelines and containerized deployments

streamlines repetitive tasks, accelerates release

cycles, and ensures consistency across development,

testing, and production environments. Teams can

respond faster to business requirements, iterate on

new features more effectively, and maintain higher

service reliability, resulting in improved overall

operational productivity.

Cost Optimization

Microservices architectures support cost-effective

resource utilization. Lightweight containers and

cloud-based infrastructure allow enterprises to scale

services on-demand, reducing the need for

overprovisioned on-premises hardware. Horizontal

and vertical scaling, combined with autoscaling

policies, optimizes computing resources, ensuring

that organizations pay only for what they use.

Additionally, open-source platforms such as Tomcat

and JBoss help reduce licensing costs compared to

proprietary enterprise software. By aligning technical

efficiency with financial considerations,

organizations can lower total cost of ownership

(TCO) while enhancing the agility and scalability of

their IT infrastructure.

Organizational Benefits

Beyond technical and financial gains, microservices

adoption fosters organizational agility. Smaller,

autonomous development teams can own specific

services, promoting accountability, faster decision-

making, and better alignment with business goals.

Collaboration between development, operations,

and business units is facilitated through shared

visibility, monitoring, and standardized deployment

practices. Teams gain exposure to modern DevOps

practices, cloud-native technologies, and container

orchestration, strengthening skill sets and

supporting talent development. Collectively, these

benefits drive innovation, accelerate time-to-market,

and empower enterprises to respond rapidly to

evolving customer needs and competitive pressures.

VIII. CASE STUDIES AND LESSONS

LEARNED

Enterprise Adoption

A global financial institution illustrates the benefits

of migrating monolithic JBoss applications to a

microservices architecture. The organization faced

challenges in scaling its legacy systems to support

high-volume transactions and frequent regulatory

updates. By decomposing its monolithic Java

applications into microservices and deploying them

on Tomcat and JBoss containers, the enterprise

achieved improved scalability, fault isolation, and

accelerated release cycles. CI/CD pipelines

automated deployment, while Kubernetes

orchestration ensured high availability and efficient

resource utilization. The migration reduced

downtime, enhanced operational flexibility, and

allowed the IT team to respond more quickly to

changing business requirements.

Mid-Market Implementation

A mid-sized e-commerce company demonstrates

how smaller organizations can benefit from

microservices migration. Its monolithic application

experienced performance bottlenecks during peak

shopping periods, resulting in lost revenue and poor

customer experiences. Migrating to microservices on

Tomcat for web services and JBoss for core business

logic enabled the company to distribute workloads

efficiently, scale services dynamically, and implement

independent service updates without impacting the

entire system. The adoption of containerization and

monitoring tools improved system observability,

enabling proactive troubleshooting and optimized

resource allocation.

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

6

Lessons Learned

These case studies reveal several key lessons for

organizations undertaking monolith-to-

microservices migrations. First, thorough assessment

and planning, including dependency mapping and

risk evaluation, are critical to mitigate technical and

operational risks. Second, incremental migration

strategies, such as the strangler pattern, reduce

disruption and allow validation of new services in

production environments. Third, automation and

CI/CD pipelines are essential for maintaining

consistency, repeatability, and quality across

services. Finally, organizational readiness—including

staff training in DevOps practices, cloud-native tools,

and container orchestration—plays a pivotal role in

ensuring a successful and sustainable migration. By

applying these lessons, enterprises of varying scale

can optimize performance, reduce operational

complexity, and accelerate innovation while

modernizing their IT infrastructure.

IX. FUTURE TRENDS

Serverless and Cloud-Native Microservices

The evolution of microservices is increasingly

intertwined with serverless computing and cloud-

native architectures. Enterprises are adopting

Function-as-a-Service (FaaS) platforms to execute

individual microservice functions without managing

underlying infrastructure, allowing dynamic scaling,

reduced operational overhead, and cost

optimization. Cloud-native platforms such as

Kubernetes, OpenShift, and managed container

services provide automated orchestration, service

discovery, and self-healing capabilities. Integrating

JBoss and Tomcat services with serverless or cloud-

native environments can enhance agility, reduce

latency, and improve resilience in hybrid or multi-

cloud deployments.

AI and Automation in DevOps

Artificial intelligence and advanced automation are

poised to transform microservices management.

Predictive analytics, anomaly detection, and AI-

driven scaling can optimize resource allocation and

performance while reducing manual intervention.

Intelligent CI/CD pipelines enable automated

testing, deployment, and rollback strategies,

accelerating development cycles and improving

system reliability. AI-powered monitoring and

observability platforms allow enterprises to

proactively detect issues, optimize load balancing,

and maintain compliance, creating a self-adaptive IT

ecosystem that aligns technical operations with

business objectives.

Evolving Middleware Ecosystem

The middleware landscape supporting JBoss,

Tomcat, and microservices continues to advance.

Modern middleware platforms offer improved

container integration, lightweight deployment

options, and enhanced cloud-native compatibility.

Tools for API management, service mesh

implementation, and distributed tracing are

becoming standard components in enterprise

architectures. As organizations embrace hybrid

cloud and edge computing scenarios, middleware

evolution ensures seamless integration, operational

consistency, and scalable performance. Enterprises

adopting these emerging technologies will be better

equipped to meet dynamic business requirements

and accelerate digital transformation initiatives.

X. CONCLUSION

Migrating from monolithic Java applications to

microservices using JBoss and Tomcat represents a

strategic imperative for enterprises seeking agility,

scalability, and operational efficiency in cloud

computing environments. Monolithic architectures,

while historically effective for centralized application

deployment, present significant challenges as

applications grow in complexity. Tight coupling,

resource inefficiencies, and slow release cycles limit

organizational responsiveness, making

modernization essential for enterprises aiming to

remain competitive in fast-evolving markets. The

migration process involves careful assessment,

planning, and execution. Breaking down monolithic

systems into independent, loosely coupled

microservices requires code refactoring,

modularization, and the implementation of

standardized APIs. Containerization with platforms

such as Docker, coupled with orchestration tools like

Kubernetes or OpenShift, enables reliable, scalable

deployments across hybrid and cloud environments.

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

7

Middleware and integration strategies ensure

continuity between legacy components and new

services, while CI/CD pipelines and automation

streamline testing, deployment, and monitoring.

Security, data protection, and regulatory compliance

are critical considerations, ensuring that the

modernized architecture meets enterprise

governance standards. From a business perspective,

microservices adoption delivers measurable benefits,

including faster release cycles, improved fault

isolation, cost-efficient resource utilization, and

enhanced operational agility. Teams gain autonomy

and exposure to modern DevOps practices, while

organizations can respond more effectively to

changing business requirements, customer

demands, and competitive pressures. Case studies

from large enterprises and mid-sized organizations

demonstrate the practical value of incremental

migration strategies, best practices, and lessons

learned, reinforcing the feasibility and impact of

microservices transformations. Looking ahead,

emerging trends such as serverless computing, AI-

driven automation, and evolving middleware

ecosystems will further enhance the efficiency and

scalability of microservices architectures. Enterprises

that embrace these technologies, combined with

JBoss and Tomcat platforms, can achieve future-

ready IT environments that support innovation,

resilience, and digital transformation. In conclusion,

migrating from monolithic to microservices

architectures is not merely a technical upgrade—it is

a comprehensive strategic initiative that aligns

enterprise IT with modern business objectives,

optimizing performance, scalability, and operational

excellence in the cloud era.

REFERENCE

1. Battula, V. (2015). Next-generation LAMP stack

governance: Embedding predictive analytics and

automated configuration into enterprise

Unix/Linux architectures. International Journal of

Research and Analytical Reviews, 2(3).

2. Battula, V. (2016). Adaptive hybrid

infrastructures: Cross-platform automation and

governance across virtual and bare metal

Unix/Linux systems using modern toolchains.

International Journal of Trend in Scientific

Research and Development, 1(1).

3. Battula, V. (2017). Unified Unix/Linux operations:

Automating governance with Satellite, Kickstart,

and Jumpstart across enterprise infrastructures.

International Journal of Creative Research

Thoughts, 5(1). Retrieved from

http://www.ijcrt.org

4. Battula, V. (2018). Securing and automating Red

Hat, Solaris, and AIX: Provisioning-to-

performance frameworks with LDAP/AD

integration. International Journal of Current

Science, 8(1). Retrieved from

http://www.ijcspub.org

5. Gowda, H. G. (2017). Container intelligence at

scale: Harmonizing Kubernetes, Helm, and

OpenShift for enterprise resilience. International

Journal of Scientific Research & Engineering

Trends, 2(4), 1–6.

6. Kota, A. K. (2017). Cross-platform BI migrations:

Strategies for seamlessly transitioning

dashboards between Qlik, Tableau, and Power

BI. International Journal of Scientific

Development and Research, 3(?). Retrieved from

http://www.ijsdr.org

7. Kota, A. K. (2018). Dimensional modeling

reimagined: Enhancing performance and

security with section access in enterprise BI

environments. International Journal of Science,

Engineering and Technology, 6(2).

8. Kota, A. K. (2018). Unifying MDM and data

warehousing: Governance-driven architectures

for trustworthy analytics across BI platforms.

International Journal of Creative Research

Thoughts, 6(?). Retrieved from

http://www.ijcrt.org

9. Madamanchi, S. R. (2015). Adaptive Unix

ecosystems: Integrating AI-driven security and

automation for next-generation hybrid

infrastructures. International Journal of Science,

Engineering and Technology, 3(2).

10. Madamanchi, S. R. (2017). From compliance to

cognition: Reimagining enterprise governance

with AI-augmented Linux and Solaris

frameworks. International Journal of Scientific

Research & Engineering Trends, 3(3).

11. Madamanchi, S. R. (2018). Intelligent enterprise

server operations: Leveraging Python, Perl, and

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

8

shell automation across Sun Fire, HP Integrity,

and IBM pSeries platforms. International Journal

of Trend in Research and Development, 5(6).

12. Maddineni, S. K. (2016). Aligning data and

decisions through secure Workday integrations

with EIB Cloud Connect and WD Studio. Journal

of Emerging Technologies and Innovative

Research, 3(9), 610–617. Retrieved from

http://www.jetir.org

13. Maddineni, S. K. (2017). Comparative analysis of

compensation review deployments across

different industries using Workday. International

Journal of Trend in Scientific Research and

Development, 2(1), 1900–1904.

14. Maddineni, S. K. (2017). Dynamic accrual

management in Workday: Leveraging calculated

fields and eligibility rules for precision leave

planning. International Journal of Current

Science, 7(1), 50–55. Retrieved from

http://www.ijcspub.org

15. Maddineni, S. K. (2017). From transactions to

intelligence by unlocking advanced reporting

and security capabilities across Workday

platforms. TIJER – International Research Journal,

4(12), a9–a16. Retrieved from

http://www.tijer.org

16. Maddineni, S. K. (2017). Implementing Workday

for contractual workforces: A case study on letter

generation and experience letters. International

Journal of Trend in Scientific Research and

Development, 1(6), 1477–1480.

17. Maddineni, S. K. (2018). Automated change

detection and resolution in payroll integrations

using Workday Studio. International Journal of

Trend in Research and Development, 5(2), 778–

780.

18. Maddineni, S. K. (2018). Governance driven

payroll transformation by embedding PECI and

PI into resilient Workday delivery frameworks.

International Journal of Scientific Development

and Research, 3(9), 236–243. Retrieved from

http://www.ijsdr.org

19. Maddineni, S. K. (2018). Multi-format file

handling in Workday: Strategies to manage CSV,

XML, JSON, and EDI-based integrations.

International Journal of Science, Engineering and

Technology, 6(2).

20. Maddineni, S. K. (2018). XSLT and document

transformation in Workday integrations:

Patterns for accurate outbound data

transmission. International Journal of Science,

Engineering and Technology, 6(2).

21. Mulpuri, R. (2016). Conversational enterprises:

LLM-augmented Salesforce for dynamic

decisioning. International Journal of Scientific

Research & Engineering Trends, 2(1).

22. Mulpuri, R. (2017). Sustainable Salesforce CRM:

Embedding ESG metrics into automation loops

to enable carbon-aware, responsible, and agile

business practices. International Journal of Trend

in Research and Development, 4(6). Retrieved

from http://www.ijtrd.com

23. Mulpuri, R. (2018). Federated Salesforce

ecosystems across poly cloud CRM

architectures: Enabling enterprise agility,

scalability, and seamless digital transformation.

International Journal of Scientific Development

and Research, 3(6). Retrieved from

http://www.ijsdr.org

24. Ahmad, N., Naveed, Q.N., & Hoda, N. (2018).

Strategy and procedures for Migration to the

Cloud Computing. 2018 IEEE 5th International

Conference on Engineering Technologies and

Applied Sciences (ICETAS), 1-5.

25. Khan, N., & Al-Yasiri, A. (2016). Framework for

cloud computing adoption: A road map for Smes

to cloud migration. ArXiv, abs/1601.01608.

26. Buzachis, A., Galletta, A., Carnevale, L., Celesti, A.,

Fazio, M., & Villari, M. (2018). Towards Osmotic

Computing: Analyzing Overlay Network

Solutions to Optimize the Deployment of

Container-Based Microservices in Fog, Edge and

IoT Environments. 2018 IEEE 2nd International

Conference on Fog and Edge Computing

(ICFEC), 1-10.

27. Carvalho, J.O., Trinta, F.A., & Vieira, D. (2018).

PacificClouds: A Flexible MicroServices based

Architecture for Interoperability in Multi-Cloud

Environments. International Conference on

Cloud Computing and Services Science.

28. Alkhalil, A., Sahandi, R., & John, D. (2017). A

decision process model to support migration to

cloud computing. Int. J. Bus. Inf. Syst., 24, 102-

126.

 Rebecca Dias. International Journal of Science, Engineering and Technology,

 2019, 7:2

9

29. Odun-Ayo, I., Oladimeji, T., & Odede, B. (2018).

Cloud Computing Economics: Issues

andDevelopments.

30. Lloyd, W.J., Vu, M., Zhang, B., David, O., &

Leavesley, G.H. (2018). Improving Application

Migration to Serverless Computing Platforms:

Latency Mitigation with Keep-Alive Workloads.

2018 IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC

Companion), 195-200.

31. Liu, X., Zhan, Z., Deng, J.D., Li, Y., Gu, T., & Zhang,

J. (2018). An Energy Efficient Ant Colony System

for Virtual Machine Placement in Cloud

Computing. IEEE Transactions on Evolutionary

Computation, 22, 113-128.

32. Gulushanian, A. (2017). Cloud Computing: New

Opportunities or New Risks? How to Mitigate

Cloud Risks in Oil & Gas Industry. British Journal

of Applied Science and Technology, 19, 1-17.

